A Finite-Time Thermal Cycle Variational Optimization with a Stefan-Boltzmann Law for Three Different Criteria
نویسندگان
چکیده
This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law) was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.
منابع مشابه
Thermal Simulation of Solidification Process in Continuous Casting
In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملThermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance
The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: maximum power (MP), maximum ecological function (ME) and maximum efficient power (EP). In this study, different heat tr...
متن کاملOptimization of thermal curing cycle for a large epoxy model
Heat generation in an exothermic reaction during the curing process and low thermal conductivity of the epoxy resin produces high peak temperature and temperature gradients which result in internal and residual stresses, especially in large epoxy samples. In this paper, an optimization algorithm was developed and applied to predict the thermal cure cycle to minimize the temperature peak and the...
متن کاملOptimization of 3-D natural convection around the isothermal cylinder using Taguchi method
This study discusses the application of Taguchi method in assessing minimum entropy generation and maximum heat transfer rate for natural convection in an enclosure embedded with isothermal cylinder. The simulations were planned based on Taguchi’s L25 orthogonal array with each trial performed under different conditions of position and aspect ratio (AR) of the cylinder. The thermal lattice Bolt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 14 شماره
صفحات -
تاریخ انتشار 2012